HAND GESTURE RECOGNITION USING MACHINE LEARNING ALGORITHMS

Abstract

Communication between people is an integral part of life. In the process of communication, people convey their emotions, thoughts, desires to each other. People with disabilities, such as deaf and dumb people, experience various difficulties in the process of communication [1]. Today, 5% of the world's people (more than 430 million), and in Kazakhstan more than 18 thousand people suffer from deafness. By 2050, this it is assumed will reach 700 million people around the world. Deaf or mute people use hand gestures to communicate with others, to express themselves correctly. People who speak a natural language do not always understand their actions. To understand this, we need sign language interpreters. Their number is very small, and most of them work in large cities or regional centers.  The solution to these problems can be found by human computer interaction. Today, a lot of research is being carried out in this direction. To solve this problem, a lot of research is currently underway. But the program that provides the perfect two-way translation has not yet been created. Especially for people who speak in Kazakh language. In this paper will be considered classical algorithms for gesture recognition.





TRANSLATE with x

English






Arabic
Hebrew
Polish


Bulgarian
Hindi
Portuguese


Catalan
Hmong Daw
Romanian


Chinese Simplified
Hungarian
Russian


Chinese Traditional
Indonesian
Slovak


Czech
Italian
Slovenian


Danish
Japanese
Spanish


Dutch
Klingon
Swedish


English
Korean
Thai


Estonian
Latvian
Turkish


Finnish
Lithuanian
Ukrainian


French
Malay
Urdu


German
Maltese
Vietnamese


Greek
Norwegian
Welsh


Haitian Creole
Persian
 










 

TRANSLATE with

COPY THE URL BELOW

Back


EMBED THE SNIPPET BELOW IN YOUR SITE

Enable collaborative features and customize widget: Bing Webmaster Portal
Back



 

 
Язык этой страницы: Английский

 
Перевести на Русский

 
 
 

 






  • Азербайджанский

  • Албанский

  • Амхарский

  • Английский

  • Арабский

  • Армянский

  • Африкаанс

  • Бенгальский

  • Бирманский

  • Болгарский

  • Валлийский

  • Венгерский

  • Вьетнамский

  • Греческий

  • Гуджарати

  • Датский

  • Иврит

  • Индонезийский

  • Исландский

  • Испанский

  • Итальянский

  • Казахский

  • Каннада

  • Каталанский

  • Китайский (традиционный)

  • Китайский (упрощенный)

  • Корейский

  • Креольский (гаити)

  • Курманджи

  • Кхмерский

  • Лаосский

  • Латышский

  • Литовский

  • Малагасийский

  • Малайский

  • Малаялам

  • Мальтийский

  • Маори

  • Маратхи

  • Немецкий

  • Непальский

  • Нидерландский

  • Норвежский

  • Панджаби

  • Персидский

  • Польский

  • Португальский

  • Пушту

  • Румынский

  • Русский

  • Самоанский

  • Словацкий

  • Словенский

  • Тайский

  • Тамильский

  • Телугу

  • Турецкий

  • Украинский

  • Урду

  • Финский

  • Французский

  • Хинди

  • Хорватский

  • Чешский

  • Шведский

  • Эстонский

  • Японский




 



Всегда переводить Английский на РусскийPRO
Никогда не переводить Английский
Никогда не переводить jpcsip.kaznu.kz

Author Biographies

Otabek Nuriddinov, Al-Farabi Kazakh National University, Almaty, Kazakhstan
Janar Omirbekova, Al-Farabi Kazakh National University, Almaty, Kazakhstan
Published
2023-04-03
How to Cite
NURIDDINOV, Otabek; OMIRBEKOVA, Janar. HAND GESTURE RECOGNITION USING MACHINE LEARNING ALGORITHMS. Journal of problems in computer science and information technologies, [S.l.], v. 1, n. 1, apr. 2023. ISSN 2958-0846. Available at: <https://dslib.kaznu.kz/index.php/kaznu/article/view/JPCSIT.2023.v1.i1.010>. Date accessed: 23 nov. 2024. doi: https://doi.org/10.26577/JPCSIT.2023.v1.i1.010.