NEURAL NETWORK SYSTEM FOR SELECTING INDIVIDUAL OBJECTS ON RAST IMAGES

Abstract

The article is devoted to solving the problem of increasing the efficiency of neural network tools for semantic segmentation of images. Based on the results of the analysis, it is shown that one of the areas of improvement of such tools is the development of the architecture of the neural network system for the selection of individual objects on raster images. As a result of the conducted research, the architecture of the neural network system for the selection of objects on raster images has been developed, which, due to the adaptation of architectural parameters to the features of the construction and use of modern neural network models intended for the semantic segmentation of images, ensures sufficient accuracy with the permissible amount of use of computing resources. The difference of the developed architecture is the use of functional blocks that are related to the formation of training databases, training of a neural network and selection of an object in the image with the help of a trained neural network. The results of the conducted experiments showed that the application of the proposed architectural solutions allows to develop tools that ensure the achievement of image segmentation accuracy of about 0.8, which corresponds to the accuracy of the best known systems of similar purpose. It is shown that the further increase in accuracy, which can be realized by modifying the parameters of convolutional neural networks on which the encoder and decoder are based, requires additional theoretical research. In addition, the perspective of research related to the improvement of neural network models in the direction of their adaptation to the selection of objects in the video stream is shown





TRANSLATE with x

English






Arabic
Hebrew
Polish


Bulgarian
Hindi
Portuguese


Catalan
Hmong Daw
Romanian


Chinese Simplified
Hungarian
Russian


Chinese Traditional
Indonesian
Slovak


Czech
Italian
Slovenian


Danish
Japanese
Spanish


Dutch
Klingon
Swedish


English
Korean
Thai


Estonian
Latvian
Turkish


Finnish
Lithuanian
Ukrainian


French
Malay
Urdu


German
Maltese
Vietnamese


Greek
Norwegian
Welsh


Haitian Creole
Persian
 










 

TRANSLATE with

COPY THE URL BELOW

Back


EMBED THE SNIPPET BELOW IN YOUR SITE

Enable collaborative features and customize widget: Bing Webmaster Portal
Back



 

 
Язык этой страницы: Английский

 
Перевести на Русский

 
 
 

 






  • Азербайджанский

  • Албанский

  • Амхарский

  • Английский

  • Арабский

  • Армянский

  • Африкаанс

  • Бенгальский

  • Бирманский

  • Болгарский

  • Валлийский

  • Венгерский

  • Вьетнамский

  • Греческий

  • Гуджарати

  • Датский

  • Иврит

  • Индонезийский

  • Исландский

  • Испанский

  • Итальянский

  • Казахский

  • Каннада

  • Каталанский

  • Китайский (традиционный)

  • Китайский (упрощенный)

  • Корейский

  • Креольский (гаити)

  • Курманджи

  • Кхмерский

  • Лаосский

  • Латышский

  • Литовский

  • Малагасийский

  • Малайский

  • Малаялам

  • Мальтийский

  • Маори

  • Маратхи

  • Немецкий

  • Непальский

  • Нидерландский

  • Норвежский

  • Панджаби

  • Персидский

  • Польский

  • Португальский

  • Пушту

  • Румынский

  • Русский

  • Самоанский

  • Словацкий

  • Словенский

  • Тайский

  • Тамильский

  • Телугу

  • Турецкий

  • Украинский

  • Урду

  • Финский

  • Французский

  • Хинди

  • Хорватский

  • Чешский

  • Шведский

  • Эстонский

  • Японский




 



Всегда переводить Английский на РусскийPRO
Никогда не переводить Английский
Никогда не переводить jpcsip.kaznu.kz

Author Biographies

Ihor Tereikovskyi, National Technical University of Ukraine, Kyiv, Ukraine
Oleh Tereikovskyi, National Aviation University, Kyiv, Ukraine
Published
2023-07-03
How to Cite
TEREIKOVSKYI, Ihor; TEREIKOVSKYI, Oleh. NEURAL NETWORK SYSTEM FOR SELECTING INDIVIDUAL OBJECTS ON RAST IMAGES. Journal of problems in computer science and information technologies, [S.l.], v. 1, n. 2, july 2023. ISSN 2958-0846. Available at: <https://dslib.kaznu.kz/index.php/kaznu/article/view/24>. Date accessed: 23 nov. 2024. doi: https://doi.org/10.26577/JPCSIT.2023.v1.i2.01.