RECOGNITION OF HUMAN ACTIONS USING MACHINE LEARNING METHODS

Abstract

Human action recognition is a significant area of focus within computer vision, and it is intertwined with several other disciplines such as computer science, psychology, and healthcare. This is due to the increasing number of videos and the potential applications for automatic video analysis, such as video surveillance, human-machine interaction, sports analysis, and video search. In this research, we applied machine learning algorithms such as Random Forest, MLP Classifier, AdaBoost, and QDA to recognize human actions and compared the results. The results of the tests showed that the MLP Classifier had an accuracy of 97%, the Random Forest had an accuracy of 95%, the AdaBoost had an accuracy of 76%, and the QDA had an accuracy of 74%. In the training dataset, the MLP Classifier had an accuracy of 98%, the Random Forest had an accuracy of 99%, the AdaBoost had an accuracy of 76%, and the QDA had an accuracy of 74%. Out of all the algorithms, the MLP Classifier showed the best results.


 


 




TRANSLATE with x

English






Arabic
Hebrew
Polish


Bulgarian
Hindi
Portuguese


Catalan
Hmong Daw
Romanian


Chinese Simplified
Hungarian
Russian


Chinese Traditional
Indonesian
Slovak


Czech
Italian
Slovenian


Danish
Japanese
Spanish


Dutch
Klingon
Swedish


English
Korean
Thai


Estonian
Latvian
Turkish


Finnish
Lithuanian
Ukrainian


French
Malay
Urdu


German
Maltese
Vietnamese


Greek
Norwegian
Welsh


Haitian Creole
Persian
 










 

TRANSLATE with

COPY THE URL BELOW

Back


EMBED THE SNIPPET BELOW IN YOUR SITE

Enable collaborative features and customize widget: Bing Webmaster Portal
Back



 

 
Язык этой страницы: Английский

 
Перевести на Русский

 
 
 

 






  • Азербайджанский

  • Албанский

  • Амхарский

  • Английский

  • Арабский

  • Армянский

  • Африкаанс

  • Бенгальский

  • Бирманский

  • Болгарский

  • Валлийский

  • Венгерский

  • Вьетнамский

  • Греческий

  • Гуджарати

  • Датский

  • Иврит

  • Индонезийский

  • Исландский

  • Испанский

  • Итальянский

  • Казахский

  • Каннада

  • Каталанский

  • Китайский (традиционный)

  • Китайский (упрощенный)

  • Корейский

  • Креольский (гаити)

  • Курманджи

  • Кхмерский

  • Лаосский

  • Латышский

  • Литовский

  • Малагасийский

  • Малайский

  • Малаялам

  • Мальтийский

  • Маори

  • Маратхи

  • Немецкий

  • Непальский

  • Нидерландский

  • Норвежский

  • Панджаби

  • Персидский

  • Польский

  • Португальский

  • Пушту

  • Румынский

  • Русский

  • Самоанский

  • Словацкий

  • Словенский

  • Тайский

  • Тамильский

  • Телугу

  • Турецкий

  • Украинский

  • Урду

  • Финский

  • Французский

  • Хинди

  • Хорватский

  • Чешский

  • Шведский

  • Эстонский

  • Японский




 



Всегда переводить Английский на РусскийPRO
Никогда не переводить Английский
Никогда не переводить jpcsip.kaznu.kz

Author Biographies

Yersultan Beisen, Astana IT University, Astana, Kazakhstan
Yedil Nurakhov, Astana IT University, Astana, Kazakhstan
How to Cite
BEISEN, Yersultan; NURAKHOV, Yedil. RECOGNITION OF HUMAN ACTIONS USING MACHINE LEARNING METHODS. Journal of problems in computer science and information technologies, [S.l.], v. 1, n. 1, mar. 2023. ISSN 2958-0846. Available at: <https://dslib.kaznu.kz/index.php/kaznu/article/view/JPCSIT.2023.v1.i1.05>. Date accessed: 22 nov. 2024. doi: https://doi.org/10.26577/JPCSIT.2023.v1.i1.05.